In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Quantifying continental-scale river discharge is essential for understanding the terrestrial water cycle, which is susceptible to errors due to lack of observations or limitations in hydrodynamic modelling. Data assimilation (DA) methods are increasingly utilized to estimate river discharge combined with the emerging amount of river-related remote sensing data (e.g., water surface elevation, water surface slope, river width, flood extent, etc.). However, direct comparison of simulated water surface elevation (WSE) with the satellite altimetry data remains still challenging (i.e., large bias between simulations and observation, uncertainty in parameters, etc.) and can introduce large errors when assimilating satellite observations to hydrodynamic models. We performed several experiments, namely, direct, anomaly, and normalized value assimilations, to investigate the capability of DA to improve the river discharge with the current limitations of hydrodynamic modelling. The hydrological data assimilation was performed using a physically-based empirical localization method in the Amazon Basin. We used satellite altimetry data from ENVISAT, Jason 1 and Jason 2 for this study. The direct DA was used as the baseline of the assimilations, but it was subjected to errors due to the biases in the simulated WSE. As an alternative to direct DA, we used anomaly DA to overcome the errors due to the biases in the simulated WSE. In addition, we found that the modelled WSE distribution and the observed distribution differed considerably (i.e., amplitude differences, seasonal flow variations, distribution skewness due to limitations of hydrodynamic models, etc.). Therefore, a normalized value DA was performed to realize better discharge estimation. River discharge improved in 24%, 38%, and 62% of the stream gauges in the direct, anomaly, and normalized value assimilations compared to simulations without DA. The normalized value assimilation performed better in estimating river discharge given the current limitations of hydrodynamic models. Most of the gauges within the river reaches with satellite observations accurately estimated the river discharge with Nash-Sutcliffe Efficiency (NSE) > 0.6. The amplitudes of WSE were improved in the normalized DA experiment. Furthermore, in the Amazon Basin, normalized assimilation (median NSE=0.47) can improve river discharge estimation over the open-loop simulation with global hydrodynamic modeling (median NSE=0.13). River discharge estimation by direct DA methods can be improved by 7% of NSE by calibrating river bathymetry. Moreover, the direct DA approach outperforms the other DA methods when the runoff is considerably (50%) biased. The uncertainties in hydrodynamic modelling (i.e., river bottom elevation, river width, simplified floodplain dynamics, rectangular cross-section assumption, etc.) should be improved for better estimation of river discharge by assimilating satellite altimetry. This study will contribute to developing a global river discharge reanalysis product that is consistent spatially and temporally.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Comments
There are currently no comments
New Comment