In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Phosphorus (P) is a key limiting nutrient in highly weathered soils of humid tropical forests. A large proportion of P in these soils is bound to redox‐sensitive iron (Fe) minerals; however, little is known about how Fe redox interactions affect soil P cycling. In an incubation experiment, we changed bulk soil redox regimes by varying headspace conditions (air vs. N2 gas), and examined the responses of soil P and Fe species to two fluctuating treatments (4‐ or 8‐day oxic followed by 4‐day anoxic) and two static redox treatments (oxic and anoxic). A static anoxic headspace increased NaOH‐extractable inorganic P (NaOH‐Pi) and ammonium oxalate‐extractable total P (AO‐Pt) by 10% and 38%, respectively, relative to a static oxic headspace. Persistent anoxia also increased NaHCO3‐extractable total P (NaHCO3‐Pt) towards the end of the experiment. Effects of redox fluctuation were more complex and dependent on temporal scales. Ammonium oxalate‐extractable Fe and Pt concentrations responded to redox fluctuation early in the experiment, but not thereafter, suggesting a depletion of reductants over time. Immediately following a switch from an oxic to anoxic headspace, concentrations of AO‐Pt, AO‐Fe, and HCl‐extractable Fe (II) increased (within 30 min), but fell back to initial levels by 180 min. Surprisingly, the labile P pool (NaHCO3‐Pt) decreased immediately after reduction events, potentially due to resorption and microbial uptake. Overall, our data demonstrate that P fractions can respond rapidly to changes in soil redox conditions, and in environments where redox oscillation is common, roots and microbes may benefit from these rapid P dynamics.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Luquillo CZO and LTER, Puerto Rico, Ultisols, plant available phosphorous, Hedley fractionation, Olsen P, redox oscillation, iron reduction
variables
redox treatments, labelled vs unlabelled ryegrass, anoxic vs oxic headspace, day of experiment, mintues after swtiching headspace, NaHCO3 extractable total Phosphorus, NaOH extractable inorganic Phosphorus, NaOH extractable organic Phosphorus, HCl extractable Iron (II), Iron in ammonium oxalate extract, Phosphorus in ammonium oxalate extract
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
NSF DEB
Collaborative Research: The Role of Iron Redox Dynamics in Carbon Losses from Tropical Forest Soils
1457805
NSF EAR
Luquillo CZO
1331841
NSF DEB
Luquillo LTER
0620910
How to Cite
Lin, Y., A. Bhattacharyya, A. N. Campbell, P. S. Nico, J. Pett-Ridge, W. L. Silver (2020). LCZO -- Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil -- El Verde Field Station -- (2016-2018), HydroShare, http://www.hydroshare.org/resource/17d08a700064431180c55fc342bec839
This resource is shared under the Creative Commons Attribution CC BY.
Comments
There are currently no comments
New Comment