In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Riparian zones are one of the most complex redox-dynamic systems, where sequential redox zones of dissolved oxygen, nitrate, manganese dioxide, ferric hydroxide and sulfate reduction commonly form. River stage dynamics and microbes are two key controls on nutrient transformation in the riparian zone. Microbial growth, on one hand, increases the biogeochemical reaction rate by altering the microbial population. On the other hand, decreases the permeability of the media due to clogging effects, thereby increasing the residence time of solutes. However, previous studies have often concentrated on steady-state flow systems and overlooked the impacts of river stage fluctuations and dynamic microbial growth on redox zonation. In this study, we investigated the interactions among river fluctuations, nutrient supplies, microbial metabolisms and sediment physical properties in a dynamic riparian system. A column experiment was conducted, and a one-dimensional modeling framework that coupled flow, reactive solute transport, dynamic microbial growth and bioclogging processes was developed to study the spatiotemporal evolution of redox zonation in response to river stage fluctuations and microbial growth. Our results showed that two redox zonation patterns, including a typical sequence and an interlaced sequence, could form in the dynamic riparian zone. Increasing exogenous DOC concentration facilitates the occurrence of anomalous sequence redox zonation. Modeling results also indicated that ignoring microbial growth leads to a significant difference in the spatiotemporal characterization of the redox zonation, especially for a more permeable sediment. Our results implicate the occurrence of more complicated redox zonation in a dynamic riparian system than previously reported.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
the National Natural Science Foundation of China
42107099, 42025703, 41830862
China Postdoctoral Science Foundation
2021M692979
How to Cite
Zhu, Y., H. Dai, Z. Wen, H. Liu, S. Yuan (2023). Spatiotemporal Evolution of Riparian Redox Zonation in Response to River Stage Fluctuation and Dynamic Biofilm Growth, HydroShare, https://doi.org/10.4211/hs.21aaf93ef6894b26b184713e6134273d
This resource is shared under the Creative Commons Attribution CC BY.
Comments
There are currently no comments
New Comment