LCZO -- Soil Redox Potential - R code for Mössbauer spectral subtraction -- Bisley -- 2018


Authors:
Owners: Miguel C LeonAaron ThompsonCZO LuquilloCZO National
Type: Resource
Storage: The size of this resource is 1.2 MB
Created: May 29, 2019 at 2:27 p.m.
Last updated: Apr 13, 2020 at 5:20 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 2557
Downloads: 56
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

Ferrous iron (FeII) oxidation is an important pathway for generating reactive FeIII phases in soils, which can affect organic carbon (OC) persistence/decomposition. We explored how pO2 concentration influences FeII oxidation rates and FeIII mineral composition, and how this impacts the subsequent FeIII reduction and anaerobic OC mineralization following a transition from oxic to anoxic conditions. We conducted batch soil slurry experiments within a humid tropical forest soil amended with isotopically labeled 57FeII. The slurries were oxidized with either 21% or 1% pO2 for 9 days and then incubated for 20 days under anoxic conditions. Exposure to 21% pO2 led to faster FeII oxidation rates and greater partitioning of the amended 57Fe into low-crystallinity FeIII-(oxyhydr)oxides (based on Mössbauer analysis) than exposure to 1% pO2. During the subsequent anoxic period, low-crystallinity FeIII-(oxyhydr)oxides were preferentially reduced relative to more crystalline forms with higher net rates of anoxic FeII and CO2 production—which were well correlated—following exposure to 21% pO2 than to 1% pO2. This study illustrates that in redox-dynamic systems, the magnitude of O2 fluctuations can influence the coupled iron and organic carbon cycling in soils and more broadly, that reaction rates during periods of anoxia depend on the characteristics of prior oxidation events.

R-code for Spectral Subtraction for 57Fe-spiked samples developed for:

Chen, Chunmei, Christof Meile, Jared Wilmoth, Diego Barcellos, and Aaron Thompson (2018): Influence of pO2 on iron redox cycling and anaerobic organic carbon mineralization in a humid tropical forest soil. Environmental Science & Technology 52 (14): 7709-7719. DOI: 10.1021/acs.est.8b01368

Coverage

Spatial

Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
Samples analyzed taken at Bisley
North Latitude
18.3220°
East Longitude
-65.7349°
South Latitude
18.3108°
West Longitude
-65.7485°

Temporal

Start Date: 01/01/2018
End Date: 01/31/2018
Leaflet Map data © OpenStreetMap contributors

Content

    No files to display.

Additional Metadata

Related Resources

This resource is referenced by Chen, Chunmei, Christof Meile, Jared Wilmoth, Diego Barcellos, and Aaron Thompson (2018). Influence of pO2 on iron redox cycling and anaerobic organic carbon mineralization in a humid tropical forest soil. Environmental Science & Technology 52 (14): 7709-7719 http://dx.doi.org/10.1021/acs.est.8b01368 How to Cite
The content of this resource is derived from https://doi.org/10.1021/acs.est.8b01368

How to Cite

Chen, C., C. Meile, J. Wilmoth, D. Barcellos, A. Thompson (2020). LCZO -- Soil Redox Potential - R code for Mössbauer spectral subtraction -- Bisley -- 2018, HydroShare, http://www.hydroshare.org/resource/25db6edfdaa84b94ba6627b0973b3331

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required