In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution-NoCommercial-ShareAlike CC BY-NC-SA.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
PUBLISHED IN WATER RESOURCES RESEARCH 2024 Groundwater return flow to streams is important for maintaining aquatic habitat and providing water to downstream users, particularly in irrigated watersheds experiencing water scarcity. However, in many agricultural regions, increased irrigation efficiency has reduced return flows and their subsequent in-stream benefits. Agricultural managed aquifer recharge (Ag-MAR)—where artificial recharge is conducted via irrigation canals and agricultural fields—may be a tool to recover these return flows, but implementation is challenged by water supply and water management. Using climate-driven streamflow simulations, an integrated operations-hydrology model, and a regional groundwater model, we investigated the potential for Ag-MAR to recover return flows in the Henrys Fork Snake River, Idaho (USA). We simulated potential Ag-MAR operations for water years 2023–2052, accounting for both future water supply conditions and local water management rules. We determined that Ag-MAR operations reduced springtime peak flow at the watershed outlet by 10–14% after accounting for return flows. Recharge contribution to streamflow peaked in July and November, increasing July–August streamflow by 6–14% and November–March streamflow by 9–14%. Furthermore, sites where Ag-MAR was conducted incidental to flood irrigation had more water available for recharge, compared to sites requiring recharge rights, which are junior in priority to agricultural rights. Mean annual recharge volume for the incidental recharge sites averaged 12% of annual natural streamflow, ranged from 269–335 Mm3, and was largely available in April and October. We demonstrate Ag-MAR can effectively recover groundwater return flows when applied as flood irrigation on agricultural land with senior-priority water rights.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
U.S. Bureau of Reclamation
WaterSMART Applied Science Grant
R21AP10036
Henry's Fork Foundation
Individual Donations
National Science Foundation
1633756
U.S. Department of Agriculture
National Institute of Food and Agriculture
2021-69012-35916
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
There are currently no comments
New Comment