In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Hydrogeophysical techniques, such as electrical resistivity tomography (ERT), significantly enhance our ability to observe fluid transport and transformation within highly heterogeneous subsurface environments, as well as aid in inferring hydrological models. Despite their efficacy, these methods encounter discrepancies and uncertainties related to data acquisition and geophysical inversion. To address these issues, joint inversions emerge as preferred methodologies, aiming to reduce ambiguity and establish a unified earth model. A primary challenge in this approach is the effective integration of prior information into the joint inversion framework. Particularly in cases involving multiple datasets focused on a single physical property (e.g., electrical resistivity), there exists an inherent and intrinsic parameter relationship that links collocated resistivity models, suggesting a consistent subsurface geoelectric structure. Addressing this, we introduce the concept of intrinsic parameter relationship coupling within compositional joint inversion frameworks. This method is applied to field scenarios involving Wenner, Wenner-Schlumberger, and dipole-dipole datasets to delineate preferential seepage pathways. Our observations indicate that the intrinsic parameter relationship coupling scheme effectively resolves discrepancies in data coverage, sensitivity, and Signal-to-Noise Ratio (SNR). This research contributes to the field of hydrogeology by providing more accurate resistivity estimates and distributions, utilizing multiple ERT datasets derived from varied electrode configurations.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
National Natural Science Foundation of China
41974115
Zhejiang Provincial Natural Science Foundation of China
LY19D040001
National Natural Science Foundation of China
42274188
How to Cite
Wei, Y., Z. Shi, C. Wang, M. Huang (2023). Supplemental data files for: Joint imaging of ERT datasets and its application in seepage characterization at Nanshan dam, southeast China, HydroShare, https://doi.org/10.4211/hs.3ec89350233f42899b83650775fd1ad8
This resource is shared under the Creative Commons Attribution CC BY.
Comments
There are currently no comments
New Comment