In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Modeling the coupled social and biophysical dynamics of water resource systems is increasingly important due to expanding population, fundamental transitions in the uses of water, and changes in global and regional water cycling driven by climate change. Models that explicitly represent the coupled dynamics of biophysical and social components of water resource systems are challenging to design and implement, particularly given the complicated and cross-scale nature of water governance. Agent based models (ABMs) have emerged as a tool that can capture human decision-making and nested social hierarchies. The transferability of many agent-based models of water resource systems, however, is made difficult by the location-specific details of these models. The often ad-hoc nature of the design and implementation of these models also complicates integration of high fidelity sub-models that capture biophysical dynamics like surface-groundwater exchange and the influence of global markets for commodities that drive water use. A consistent, transferable description of the individuals, groups, and/or agencies that make decisions about water resources would significantly advance the rate at which ABMs of water resource systems can be developed, enhance their applicability across ranges of spatiotemporal scales, and aid in the synthesis and comparison of models across different sites. We outline here a framework to systematically identify the primary agents that influence the storage, redistribution, and use of water within a given system.
This resource is the literature review that supports our proposed water resources agent types that capture the operational roles that modify the water balance (see Kaiser et al., 2020). This typology characterizes common actors in water management systems but can be modified to represent the particularities of specific systems when more detailed information about specific actors is available (e.g. social networks, demographics, learning and decision-making processes). Application of the proposed typologies will support the systematic design and development of transferable scaleable water resources ABMs and facilitate the dynamical coupling of social and biophysical process modeling.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Kaiser, K.E. Flores, A.N. and Hillis, V. (2020) Identifying emergent agent types and effective practices for portability, scalability, and intercomparison in water resource agent-based models, Environmental Modelling and Software, https://doi.org/10.1016/j.envsoft.2020.104671
Credits
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
Funding Agencies
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
National Science Foundation
CAREER Award
EAR-1352631
Idaho EPSCoR
IIA-1301792
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
There are currently no comments
New Comment