In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Ammonia exhaust tailpipe mixing ratios (ppm) from 47 light-duty gasoline motor vehicles were quantified using a portable ECM miniPEMS over on-road Real Driving Emissions (RDE) tests. The ECM miniPEMS was also used to retrieve various parameters data from the vehicle’s OBDII port such as vehicle speed, the revolution per minute (RPM) readings, engine load percentages, air-fuel ratio, and the temperature of the three-way catalyst converters. The vehicle exhaust temperature was also measured by the ECM miniPEMS using Type K thermocouples. The RDE tests were conducted on a 5.3-mile predefined urban testing route designed using the local road network in the City of Logan, Utah. The urban testing route included residential and highway roads, uphill and downhill road segments, stop signs, traffic lights, and a school zone with a reduced speed limit. The test cycle was coded as UWRL-UDTC (The Utah Water Research Laboratory Urban Driving Test Cycle). The portable Applus Autologic 5-Gas Portable Vehicle Gas Analyzer (model 310-0220) was also used to measure tailpipe mixing ratios (ppm) of post-catalyst carbon monoxide. Both instruments were carried onboard the tested vehicles during the test, while their sensors were mounted in the tested vehicle’s engine exhaust. The vehicle test sample of 47 light-duty gasoline motor vehicles was chosen to represent the same tier-level distribution as the on-road gasoline vehicle fleet along the Wasatch Front and the Cache County located in the U.S. State of Utah. Vehicle specifications including type, make, model, model year, mileage reading, engine displacement, number of cylinders, gross vehicle weight rating (GVWR), and tailpipe diameter were also collected for all tested vehicles. Atmospheric temperature and pressure at the time of testing were also measured. All the data collected throughout the project are included in the "Content" section of this resource. The "Content" section also includes an R Jupyter notebook used to analyze collected data. The mixing ratios of exhaust gases were first converted into emission rates (mg per mile), then, many descriptive and inferential statistical analyses and correlation analyses were performed. Many plots were also generated using the R script included in the Jupyter notebook. The main outcomes of this study can be found in the article included in the "Related Resources" section of this resource.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Abualqumboz, Motasem S., Randal S. Martin, and Joe Thomas. "On-road tailpipe characterization of exhaust ammonia emissions from in-use light-duty gasoline motor vehicles." Atmospheric Pollution Research (2022): 101449. https://doi.org/10.1016/j.apr.2022.101449
Credits
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
Funding Agencies
This resource was created using funding from the following sources:
Ammonia Emission Assessment from Diesel and Gasoline Engines under Utah Specific Conditions
190656
How to Cite
Abualqumboz, M., R. Martin, J. Thomas (2022). Data for On-Road Tailpipe Characterization of Exhaust Ammonia Emissions from in-use Light-Duty Gasoline Motor Vehicles, HydroShare, https://doi.org/10.4211/hs.43cacc7422cc48d89600bffa0d404c5d
This resource is shared under the Creative Commons Attribution CC BY.
Comments
There are currently no comments
New Comment