Hi, I'm an error. x

LCZO -- Soil Biogeochemistry -- Phosphorus fractionation response to dynamic redox -- El Verde Field Station -- (2016-2018)


Authors:
Owners:
Resource type: Composite Resource
Storage: The size of this resource is 3.5 KB
Created: Nov 06, 2019 at 2:54 a.m.
Last updated: Nov 06, 2019 at 3:19 a.m.
Citation: See how to cite this resource
Content types: Single File Content 
Sharing Status: Public
Views: 9
Downloads: 2
+1 Votes: Be the first one to  +1 this.  (You need to be logged in to rate this.)
Comments: No comments (yet)

Abstract

Phosphorus (P) is a key limiting nutrient in highly weathered soils of humid tropical forests. A large proportion of P in these soils is bound to redox‐sensitive iron (Fe) minerals; however, little is known about how Fe redox interactions affect soil P cycling. In an incubation experiment, we changed bulk soil redox regimes by varying headspace conditions (air vs. N2 gas), and examined the responses of soil P and Fe species to two fluctuating treatments (4‐ or 8‐day oxic followed by 4‐day anoxic) and two static redox treatments (oxic and anoxic). A static anoxic headspace increased NaOH‐extractable inorganic P (NaOH‐Pi) and ammonium oxalate‐extractable total P (AO‐Pt) by 10% and 38%, respectively, relative to a static oxic headspace. Persistent anoxia also increased NaHCO3‐extractable total P (NaHCO3‐Pt) towards the end of the experiment. Effects of redox fluctuation were more complex and dependent on temporal scales. Ammonium oxalate‐extractable Fe and Pt concentrations responded to redox fluctuation early in the experiment, but not thereafter, suggesting a depletion of reductants over time. Immediately following a switch from an oxic to anoxic headspace, concentrations of AO‐Pt, AO‐Fe, and HCl‐extractable Fe (II) increased (within 30 min), but fell back to initial levels by 180 min. Surprisingly, the labile P pool (NaHCO3‐Pt) decreased immediately after reduction events, potentially due to resorption and microbial uptake. Overall, our data demonstrate that P fractions can respond rapidly to changes in soil redox conditions, and in environments where redox oscillation is common, roots and microbes may benefit from these rapid P dynamics.

Subject Keywords

  • No subject keywords have been added.
  • ${ k }

Duplicate. Keyword not added.

Error: ${ error }
Deleting all keywords will set the resource sharing status to private.

Resource Level Coverage

Spatial

Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
El Verde Field Station, El Verde Field Station
Longitude
-65.8175°
Latitude
18.3211°

Temporal

Start Date:
End Date:

Content

ReadMe.md

LCZO -- Soil Biogeochemistry -- Phosphorus fractionation response to dynamic redox -- El Verde Field Station -- (2016-2018)


OVERVIEW

Description/Abstract

Phosphorus (P) is a key limiting nutrient in highly weathered soils of humid tropical forests. A large proportion of P in these soils is bound to redox‐sensitive iron (Fe) minerals; however, little is known about how Fe redox interactions affect soil P cycling. In an incubation experiment, we changed bulk soil redox regimes by varying headspace conditions (air vs. N2 gas), and examined the responses of soil P and Fe species to two fluctuating treatments (4‐ or 8‐day oxic followed by 4‐day anoxic) and two static redox treatments (oxic and anoxic). A static anoxic headspace increased NaOH‐extractable inorganic P (NaOH‐Pi) and ammonium oxalate‐extractable total P (AO‐Pt) by 10% and 38%, respectively, relative to a static oxic headspace. Persistent anoxia also increased NaHCO3‐extractable total P (NaHCO3‐Pt) towards the end of the experiment. Effects of redox fluctuation were more complex and dependent on temporal scales. Ammonium oxalate‐extractable Fe and Pt concentrations responded to redox fluctuation early in the experiment, but not thereafter, suggesting a depletion of reductants over time. Immediately following a switch from an oxic to anoxic headspace, concentrations of AO‐Pt, AO‐Fe, and HCl‐extractable Fe (II) increased (within 30 min), but fell back to initial levels by 180 min. Surprisingly, the labile P pool (NaHCO3‐Pt) decreased immediately after reduction events, potentially due to resorption and microbial uptake. Overall, our data demonstrate that P fractions can respond rapidly to changes in soil redox conditions, and in environments where redox oscillation is common, roots and microbes may benefit from these rapid P dynamics.

Creator/Author

Lin, Yan|Bhattacharyya, Amrita|Campbell, Ashley N.|Nico, Peter S.|Pett-Ridge, Jennifer|Silver, Whendee L.

CZOs

Luquillo

Contact

MIguel Leon, Miguel.Leon@unh.edu




SUBJECTS

Disciplines

Biogeochemistry

Topics

Soil Biogeochemistry

Subtopic

Phosphorus fractionation response to dynamic redox

Keywords

Luquillo CZO and LTER|Puerto Rico|Ultisols|plant available phosphorous|Hedley fractionation|Olsen P|redox oscillation|iron reduction

Variables

redox treatments| labelled vs unlabelled ryegrass| anoxic vs oxic headspace| day of experiment| mintues after swtiching headspace| NaHCO3 extractable total Phosphorus| NaOH extractable inorganic Phosphorus| NaOH extractable organic Phosphorus| HCl extractable Iron (II)| Iron in ammonium oxalate extract| Phosphorus in ammonium oxalate extract|

Variables ODM2

Depth, unsaturated zone|Iron|Phosphorus, total|Phosphorus, inorganic|Phosphorus, organic




TEMPORAL

Date Start

2016-01-01

Date End

2018-03-11




SPATIAL

Field Areas

El Verde Field Station

Location

El Verde Field Station

North latitude

18.3211

South latitude

18.3211

West longitude

-65.8175

East longitude

-65.8175




REFERENCE

Citation

Lin, Y., A. Bhattacharyya, A. N. Campbell, P. S. Nico, J. Pett-Ridge, W. L. Silver (2018). Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil, HydroShare, http://www.hydroshare.org/resource/17d08a700064431180c55fc342bec839

CZO ID

6803



Additional Metadata

Name Value
disciplines Biogeochemistry
variables redox treatments, labelled vs unlabelled ryegrass, anoxic vs oxic headspace, day of experiment, mintues after swtiching headspace, NaHCO3 extractable total Phosphorus, NaOH extractable inorganic Phosphorus, NaOH extractable organic Phosphorus, HCl extractable Iron (II), Iron in ammonium oxalate extract, Phosphorus in ammonium oxalate extract,
citation Lin, Y., A. Bhattacharyya, A. N. Campbell, P. S. Nico, J. Pett-Ridge, W. L. Silver (2018). Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil, HydroShare, http://www.hydroshare.org/resource/17d08a700064431180c55fc342bec839
keywords Luquillo CZO and LTER, Puerto Rico, Ultisols, plant available phosphorous, Hedley fractionation, Olsen P, redox oscillation, iron reduction
czos Luquillo
czo_id 6803

How to Cite

Lin, Y., A. Bhattacharyya, A. N. Campbell, P. S. Nico, J. Pett-Ridge, W. L. Silver (2019). LCZO -- Soil Biogeochemistry -- Phosphorus fractionation response to dynamic redox -- El Verde Field Station -- (2016-2018), HydroShare, http://beta.hydroshare.org/resource/5467ba0cfd4443cc9bad22dc7fe82767

This resource is shared under the Creative Commons Attribution CC BY.

 http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required