In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Samples were collected from Steve Stone’s property which is adjacent to the Calhoun Long-term forest plots (see map below - click on 'Overview Maps' tab). Three continuous mineral soil cores were collected from 0-14 m with a Geoprobe in Steve Stone’s hardwood forest (“Core Locations” in map). These surficial samples were collected from this location because contemporary vegetation, aerial photography dating back to 1938, and soil profile morphology indicated that European agriculture had minimally affected soils in this hardwood forest. Samples deeper than 14 m were collected from Steve Stone’s pasture, approximately 30 m away from the “core locations”, during the installation of a groundwater well by a private contractor (Gill Drilling Services inc.). Samples from 14-18 m were collected with a three-wing bit auger while samples from 18-67 m were collected with a roller-cone bit. After collection all samples were air-dried, and samples from 0-18 m were sieved to 2 mm.
Texture was measured by the pipette method on 20 g of sample. Soil pH was measured with a continuous flow electrode in deionized water and in 0.01 M CaCl2 with a soil:solution ratio of 0.5 and a 15 minute extraction time. Exchangeable acidity was extracted with 1M KCl (soil:solution=0.002, 30 minute extraction) and titrated to 8.2 with 0.02 M NaOH. Exchangeable calcium, magnesium, potassium, and sodium were extracted with 1 M NH4OAc (soil:solution=0.05, 30 minute extraction) and measured by Atomic Absorption Spectrophotometry. Total aluminum, beryllium, calcium, manganese, silicon, titanium, and zirconium were measured by Inductively coupled plasma atomic emission spectroscopy while total iron, magnesium, phosphorus, potassium, and sodium were measured by Atomic Absorption Spectrophotometry following LiBO2 fusion of pulverized and oxidized (30 minutes at 800 C) subsamples (0.1 g sample, 0.4 g LiBO2, 13 minutes at 1000 C). “Free”-iron and “free”-beryllium (Mehra & Jackson, 1958, DOI: 10.1346/CCMN.1958.0070122) were measured by Atomic Absorption Spectrophotometry after extraction with 1 M NH2OH·HCl in 1 M HCl (soil:solution=0.05, 4 hours at 90 C). Meteoric Beryllium-10 was extracted by KHF and NaSO4 fusion and 10Be/9Be isotopic ratios were measured by accelerator mass spectrometry. Total carbon and nitrogen were measured by combustion on a CE Elantech Flash EA 1112 Elemental Analyzer.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Bacon, Allan R., Daniel deB. Richter, Paul R. Bierman, and Dylan H. Rood (2012). Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve. Geology 40 (9): 847–850 http://dx.doi.org/10.1130/G33449.1
Comments
There are currently no comments
New Comment