GroMoPo Metadata for Akaki Catchment model
Authors: | |
---|---|
Owners: | gromopo_admin |
Type: | Resource |
Storage: | The size of this resource is 1.6 KB |
Created: | Feb 08, 2023 at 9:28 p.m. |
Last updated: | Feb 08, 2023 at 9:29 p.m. |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 779 |
Downloads: | 213 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
A three dimensional steady-state finite difference groundwater flow model is used to quantify the groundwater fluxes and analyze the subsurface hydrodynamics in the Akaki catchment by giving particular emphasis to the well field that supplies water to the city of Addis Ababa. The area is characterized by Tertiary volcanics covered with thick residual and alluvial soils. The model is calibrated using head observations from 131 wells. The simulation is made in a two layer unconfined aquifer with spatially variable recharge and hydraulic conductivities under well-defined boundary conditions. The calibrated model is used to forecast groundwater flow pattern, the interaction of groundwater and surface water, and the effect of pumping on the well field under different scenarios. The result indicates that the groundwater flows regionally to the south converging to the major well field. Reservoirs and rivers play an important role in recharging the aquifer. Simulations made under different pumping rate indicate that an increase in pumping rate results in substantial regional groundwater level decline, which will lead to the drying of springs and shallow hand dug wells. Also, it has implications of reversal of flow from contaminated rivers into productive aquifers close to main river courses. The scenario analysis shows that the groundwater potential is not enough to sustain the ever-growing water demand of the city of Addis Ababa. The sensitivity and scenario analysis provided important information on the data gaps and the specific sites to be selected for monitoring, and may be of great help for transient model development. This study has laid the foundation for developing detailed predictive groundwater model, which can be readily used for groundwater management practices.
Subject Keywords
Coverage
Spatial












Content
Additional Metadata
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment