In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution-NoCommercial CC BY-NC.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Data from Wieting, C., Ebel, B., and Singha, K. (2017). Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology-Regional Studies, http://dx.doi.org/10.1016/j.ejrh.2017.07.006, 43-57.
Infiltration processes are not well understood in fire-affected soils because soil hydraulic properties and soil-water content are altered by the heat. This study uses intact soil cores, which should maintain preferential flow paths, that were collected in the field to explore the impacts of fire on soil properties and infiltration processes during rainfall. Three soil scenarios are presented here: unburned control soils, and low- and high-severity burned soils. Fire severity was simulated in the laboratory using a heating gun, and established based on temperature and duration of heating. Soil properties pre- and post-burn were measured using laboratory techniques including: Mini Disk Infiltrometer tests, Water Drop Penetration Time (WDPT) Tests, and measurements of dry bulk density and total organic carbon (TOC). Soil moisture and temperature were recorded at approximately 2.5 cm and 7.5 cm in soil cores as was the cumulative volume of water exiting the core during rainfall simulations. Mini Disk infiltration experiments suggest a decrease in both cumulative infiltration and infiltration rates from unburned to low-severity burned soils. High-severity burned soils saw an increase in cumulative infiltration. We interpret these changes as a result of the burning off of organic materials, enabling water to infiltrate more instead of being stored in the organics. The field saturated hydraulic conductivity did not vary from unburned to low-severity burned soils, but increased in high-severity burned soils due to the lack of organics that help inhibit water movement. During rainfall simulations, soil-water storage decreased from when soils were burned, likely because of the inability to store water within organic materials since they were burned. Vulnerability to raindrop impact also increased with fire severity. Together, these results indicate that fire-induced changes from low-severity wildfires were not as drastic as high-severity wildfires, and that high-severity burned soils can infiltrate more water, but not necessarily store it. Quantifying soil properties affected by wildfire, which can be gained through controlled laboratory simulations like this study, will aid in predicting post-wildfire behavior on the watershed scale.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Wieting, C., Ebel, B., and Singha, K. (2017). Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology-Regional Studies, http://dx.doi.org/10.1016/j.ejrh.2017.07.006, 43-57.
Credits
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
Jackie Randell 5 years, 6 months ago
Thesis
ReplyMasters of Science (M.S.)
Geology and Geologicial Engineering
Colorado School of Mines
New Comment