In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution-NoCommercial CC BY-NC.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
Choose coordinates
Data from Wieting et al. (2017), Quantifying soil hydraulic property changes with fire severity by laboratory burning
Data from Wieting, C., Ebel, B., and Singha, K. (2017). Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology-Regional Studies, http://dx.doi.org/10.1016/j.ejrh.2017.07.006, 43-57.
Infiltration processes are not well understood in fire-affected soils because soil hydraulic properties and soil-water content are altered by the heat. This study uses intact soil cores, which should maintain preferential flow paths, that were collected in the field to explore the impacts of fire on soil properties and infiltration processes during rainfall. Three soil scenarios are presented here: unburned control soils, and low- and high-severity burned soils. Fire severity was simulated in the laboratory using a heating gun, and established based on temperature and duration of heating. Soil properties pre- and post-burn were measured using laboratory techniques including: Mini Disk Infiltrometer tests, Water Drop Penetration Time (WDPT) Tests, and measurements of dry bulk density and total organic carbon (TOC). Soil moisture and temperature were recorded at approximately 2.5 cm and 7.5 cm in soil cores as was the cumulative volume of water exiting the core during rainfall simulations. Mini Disk infiltration experiments suggest a decrease in both cumulative infiltration and infiltration rates from unburned to low-severity burned soils. High-severity burned soils saw an increase in cumulative infiltration. We interpret these changes as a result of the burning off of organic materials, enabling water to infiltrate more instead of being stored in the organics. The field saturated hydraulic conductivity did not vary from unburned to low-severity burned soils, but increased in high-severity burned soils due to the lack of organics that help inhibit water movement. During rainfall simulations, soil-water storage decreased from when soils were burned, likely because of the inability to store water within organic materials since they were burned. Vulnerability to raindrop impact also increased with fire severity. Together, these results indicate that fire-induced changes from low-severity wildfires were not as drastic as high-severity wildfires, and that high-severity burned soils can infiltrate more water, but not necessarily store it. Quantifying soil properties affected by wildfire, which can be gained through controlled laboratory simulations like this study, will aid in predicting post-wildfire behavior on the watershed scale.
Deleting all keywords will set the resource sharing status to private.
Resource Level Coverage
Spatial
Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
The Boulder Creek Critical Zone Observatory
Longitude
-105.4630°
Latitude
40.0119°
Temporal
Start Date:
End Date:
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
Wieting, C., Ebel, B., and Singha, K. (2017). Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology-Regional Studies, http://dx.doi.org/10.1016/j.ejrh.2017.07.006, 43-57.
Credits
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
Jackie Randell 1 year, 5 months ago
Thesis
ReplyMasters of Science (M.S.)
Geology and Geologicial Engineering
Colorado School of Mines
New Comment