1-km soil moisture predictions in the United States
Authors: | |
---|---|
Owners: | Ricardo Llamas |
Type: | Resource |
Storage: | The size of this resource is 126.9 MB |
Created: | Dec 14, 2021 at 4:48 p.m. |
Last updated: | Feb 02, 2024 at 2:21 p.m. (Metadata update) |
Published date: | Jan 20, 2022 at 5:31 p.m. |
DOI: | 10.4211/hs.5c7a4f1c16c34079b8e3583a1497cb95 |
Citation: | See how to cite this resource |
Content types: | Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content Geographic Raster Content |
Sharing Status: | Published |
---|---|
Views: | 1233 |
Downloads: | 110 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Monthly and weekly soil moisture predictions in 2010 at 1-km spatial resolution using four different Machine Learning Methods integrated in the Satellite Soil Moisture based on a modular SOil Moisture SPatial Inference Engine (SOMOSPIE- Rorabaugh et al. 2019) (kernel-weighted k-nearest neighbors <KKNN>, Random Forests <RF>, Surrogate-Based Model <SBM> and a Hybrid Piecewise Polynomial Modeling Technique <HYPPO>). Data were acquired from the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product version 6.1, 0.25-degrees spatial resolution. Modeled soil moisture layers are delivered for two regions in the conterminous United States. Each region encompasses a polygon of 7.5° x 3.75° (n = 450 pixels with 30 columns and 15 rows in the native resolution of the ESA CCI Soil moisture product). Region 1 <so called West Region> comprises an area of 275,516 km2. Region 2 <so called Midwest region> comprises an area of 283,499 km2. Predicted soil moisture values were validated by means two approaches, cross-validation using the ESA CCI estimates and independent ground-truth records from the North American Soil Moisture Database (currently known as the National Soil Moisture Network). Detailed methods and results of this dataset are described in: Llamas, R.M; Valera, Leobardo; Olaya, Paula; Taufer, Michela; Vargas, Rodrigo “Downscaling Satellite Soil Moisture based on a modular SOil Moisture SPatial Inference Engine (SOMOSPIE)”, Remote Sensing (submitted).
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | 01/01/2010 |
---|---|
End Date: | 12/31/2010 |












Content
Data Services
Related Resources
This resource is referenced by | Llamas, R.M; Valera, Leobardo; Olaya, Paula; Taufer, Michela; Vargas, Rodrigo. "Downscaling Satellite Soil Moisture based on a modular SOil Moisture SPatial Inference Engine (SOMOSPIE)", Remote Sensing (submitted) |
The content of this resource is derived from | https://www.esa-soilmoisture-cci.org/v06.1_release |
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
National Science Foundation | Collaborative Research: Elements: SENSORY: Software Ecosystem for kNowledge diScOveRY - a data-driven framework for soil moisture applications | 2103836 |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment