Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 3.8 GB | |
Created: | May 01, 2019 at 6:16 p.m. | |
Last updated: | May 30, 2019 at 10:21 p.m. | |
Citation: | See how to cite this resource | |
Content types: | Geographic Feature Content |
Sharing Status: | Public |
---|---|
Views: | 1732 |
Downloads: | 140 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
This project used Budyko-based methods to determine the elasticity and sensitivity of 29 subbasins in the Colorado River Basin. Elasticity and sensitivity are metrics used to determine the relative expected changes in runoff given changes in precipitation and temperature, respectively. We used publicly available data to determine long term averages for temperature, precipitation, and runoff for principal Colorado River subbasins. Given those data, we used Budyko-based methods to estimate the elasticity and sensitivity of each subbasin to changes in temperature and precipitation. We determined the aridity index of each subbasin and Budyko parameter (w), which aggregates watershed storage characteristics. Subcatchments located in the Upper Basin, driven mostly by snowmelt, have a lower aridity index and higher w value than those in the Lower Basin, driven by monsoonal storm events. The Paria and the Little Colorado River subbasins are particularly sensitive to changes in precipitation and temperature. To identify the initialization of direct human impacts, we used a double mass curve break point analysis on a single subcatchment. Two breakpoints were identified, 1963 and 1988, corresponding to human impact and climate change, respectively.
This data resource includes a document and power point reporting the key findings of this work. We include the code, input, and output files used to perform analyses, all of which are described in the readme.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
Data Services
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment