In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
The following files are out of sync with the metadata changes.
LCZO- Geology, Regolith Survey, Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory - Bisley and Icacos (2015-2017)
Lithologic differences give rise to the differential weatherability of the Earth’s surface and globally variable silicate weathering fluxes, which provide an important negative feedback on climate over geologic timescales. To isolate the influence of lithology on weathering rates and mechanisms, we compare two nearby catchments in the Luquillo Critical Zone Observatory in Puerto Rico, which have similar climate history, relief and vegetation, but differ in bedrock lithology. Regolith and pore water samples with depth were collected from two ridgetops and at three sites along a slope transect in the volcaniclastic Bisley catchment and compared to existing data from the granitic Río Icacos catchment. The depth variations of solid-state and pore water chemistry and quantitative mineralogy were used to calculate mass transfer (tau) and weathering solute profiles, which in turn were used to determine weathering mechanisms and to estimate weathering rates.
Regolith formed on both lithologies is highly leached of most labile elements, although Mg and K are less depleted in the granitic than in the volcaniclastic profiles, reflecting residual biotite in the granitic regolith not present in the volcaniclastics. Profiles of both lithologies that terminate at bedrock corestones are less weathered at depth, near the rock-regolith interfaces. Mg fluxes in the volcaniclastics derive primarily from dissolution of chlorite near the rock-regolith interface and from dissolution of illite and secondary phases in the upper regolith, whereas in the granitic profile, Mg and K fluxes derive from biotite dissolution. Long-term mineral dissolution rates and weathering fluxes were determined by integrating mass losses over the thickness of solid-state weathering fronts, and are therefore averages over the timescale of regolith development. Resulting long-term dissolution rates for minerals in the volcaniclastic regolith include chlorite: 8.9 × 10−14 mol m−2 s−1, illite: 2.1 × 10−14 mol m−2 s−1 and kaolinite: 4.0 × 10−14 mol m−2 s−1. Long-term weathering fluxes are several orders of magnitude lower in the granitic regolith than in the volcaniclastic, despite higher abundances of several elements in the granitic regolith. Contemporary weathering fluxes were determined from net (rain-corrected) solute profiles and thus represent rates over the residence time of water in the regolith. Contemporary weathering fluxes within the granitic regolith are similar to the long-term fluxes. In contrast, the long-term fluxes are faster than the contemporary fluxes in the volcaniclastic regolith. Contemporary fluxes in the granitic regolith are generally also slightly faster than in the volcaniclastic. The differences in weathering fluxes over space and time between these two watersheds indicate significant lithologic control of chemical weathering mechanisms and rates.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Buss, H. L., M. C. Lara, O. W. Moore, A. C. Kurtz, M. S. Schulz, A. F.White (2019). LCZO- Geology, Regolith Survey, Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory - Bisley and Icacos (2015-2017), HydroShare, http://www.hydroshare.org/resource/70d6eeb63e154f8197467e1f7c91f55b
keywords
Chemical weathering, Critical zone, Regolith, Saprolite, Soil formation
subtitle
Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory
Heather L. Buss, María Chapela Lara, Oliver W. Moore, Andrew C. Kurtz, Marjorie S. Schulz, Art F. White, Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory, Geochimica et Cosmochimica Acta, Volume 196, 2017, Pages 224-251, ISSN 0016-7037, https://doi.org/10.1016/j.gca.2016.09.038
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
How to Cite
Buss, H. L., A. C. Kurtz, M. Chapela Lara, A. F. White, M. S. Schulz, O. W. Moore (2021). LCZO- Geology, Regolith Survey, Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory - Bisley and Icacos (2015-2017), HydroShare, http://www.hydroshare.org/resource/70d6eeb63e154f8197467e1f7c91f55b
This resource is shared under the Creative Commons Attribution CC BY.
Comments
There are currently no comments
New Comment