GroMoPo Metadata for Upper Danube mountain MODFLOW model
Authors: | |
---|---|
Owners: | gromopo_admin |
Type: | Resource |
Storage: | The size of this resource is 1.6 KB |
Created: | Feb 08, 2023 at 3:15 a.m. |
Last updated: | Feb 08, 2023 at 3:16 a.m. |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 931 |
Downloads: | 227 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
In large mountainous catchments, shallow unconfined alluvial aquifers play an important role in conveying Subsurface runoff to the foreland. Their relatively small extent poses a serious problem for ground water flow models on the river basin scale. River basin scale models describing the entire water cycle are necessary in integrated water resources management and to study the impact of global climate change on ground water resources. Integrated regional-scale models must use a coarse, fixed discretization to keep computational demands low and to facilitate model Coupling. This can lead to discrepancies between model discretization and the geometrical properties of natural systems. Here. an approach to overcome this discrepancy is discussed using the example of the German-Austrian Upper Danube catchment, where a coarse ground water flow model was developed using MODFLOW. The method developed uses a modified concept from a hydrological catchment drainage analysis in order to adapt the aquifer geometry such that it respects the numerical requirements of the chosen discretization, that is, the width and the thickness of cells as well as gradients and connectivity of the catchment. In order to show the efficiency of the developed method, it was tested and compared to a finely discretized ground water model of the Ammer subcatchment. The results of the analysis prove the applicability of the new approach and contribute to the idea of using physically based ground water models in large catchments.
Subject Keywords
Coverage
Spatial












Content
Additional Metadata
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment