In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
Choose coordinates
Ranking forest effects on snow storage: a decision tool for forest management
Forests modify snow accumulation and ablation rates, and overall snow storage amounts and durations, with multiple processes acting simultaneously and often in different directions. To synthesize complex forest-snow relations and help guide near-term management decisions, we present a decision tree model based on a hypothesized hierarchy of processes and associated variables that predict forest effects on snow storage. In locations with high wind speeds, forests enhance snow storage magnitude and duration relative to open areas. Where wind speeds are low, and winter and spring air temperatures are colder, forests diminish snow storage magnitude but enhance duration. Where air temperatures are warmer, forests diminish both magnitude and duration. Forest structure and aspect are secondary influences that shift the net effect of forest on snow storage. We apply the model to map the influence of forests on snow storage under historic and warming climate conditions across the western United States, but this model is applicable in any region with forests and snow. The decision tree model provides practitioners a first-step evaluation to guide management decisions that consider where and how forests can be managed to optimize in-situ water storage alongside other objectives, such as reducing wildfire fuels. This framework also articulates geospatial hypotheses, in order of anticipated importance, to be tested in future investigations of forest-snow-climate relations.
The data and code included herein are described in Dickerson-Lange, et al. 2021, Ranking forest effects on snow storage: a decision tool for forest management, Water Resources Research. The repository contains all input data, model code, and results.
Deleting all keywords will set the resource sharing status to private.
Resource Level Coverage
Spatial
Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
North Latitude
49.3707°
East Longitude
-102.1520°
South Latitude
30.1296°
West Longitude
-126.5856°
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
The content of this resource serves as the data for:
Dickerson-Lange, S. E., J. A. Vano, R. Gersonde, and J. D. Lundquist (2021), Ranking forest effects on snow storage: a decision tool for forest management, Water Resources Research
Credits
Funding Agencies
This resource was created using funding from the following sources:
Comments
There are currently no comments
New Comment