In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Isotopic exchange with atmospheric vapor can strongly influence the isotopic ratio of evaporating surface water bodies (e.g., lakes), influencing our understanding of hydrological processes across aquatic and terrestrial environments. Rather than measure the isotopic values of the atmosphere directly, it is much more common to estimate values by assuming equilibrium with local precipitation. This assumption may introduce large error. To date, the pattern and magnitude of this error has been quantified only in a few circumstances. We compared observations of vapor and precipitation isotope values over a four-year record collected in a montane environment in the central Rocky Mountains of North America. We further investigated factors and conditions promoting disequilibrium. Scenario comparisons assessed the impact of theoretical and methodological elements on the accuracy of the equilibrium assumption. We found that the equilibrium assumption was not well supported by direct and continuous observations of vapor isotopes using tower-based laser isotope spectroscopy, particularly during the summer months. Across all scenarios, errors associated with the equilibrium assumption were high, credibly ranging from 14 to 154 ‰ for δ<sup>2</sup>H and 1.5 to 16.3‰ for δ<sup>18</sup>O. Environmental covariates (e.g., vapor pressure deficit, air pressure) helped explain some of the apparent disequilibrium. Although the equilibrium assumption for estimating atmospheric vapor isotope values may not be applicable in a continental montane environment, our findings highlight opportunities for using direct vapor isotope measurements to better understand vapor sources, air mass mixing, and phase changes over complex mountainous terrain, which in turn may better constrain regional- to global-scale hydrological processes, such as evapotranspiration and water budgets of mountain lakes.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Mercer, JJ, DT Liefert, and DG Williams. 2020. Atmospheric vapor and precipitation are not in isotopic equilibrium in a continental mountain environment. Hydrological Processes. https://doi.org/10.1002/hyp.13775
Credits
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
Funding Agencies
This resource was created using funding from the following sources:
Wyoming Center for Environmental Hydrology and Geophysics
1208909
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Name
Organization
Address
Phone
Author Identifiers
John Frank
Rocky Mountain Research Station, US Forest Service
John Korfmacher
Rocky Mountain Research Station, US Forest Service
Comments
There are currently no comments
New Comment