In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Water availability is crucial for organismal survival and growth in dryland environments, affecting both ecological interactions and carbon dynamics. The goal of this thesis is to develop soil water release curves (SWRCs) that link soil water potentials (Ψ) to soil water content (θ). Using the SWRCs, temporal soil water sufficiency curves are developed, which quantify the amount of time that dryland critical zones have enough water to sustain the physiology of organisms. These curves allow for effectively indicating water availability across different species, coverage types, and soil conditions, enhancing our understanding of water dynamics in drylands and contributing important parameters for a variety of studies. I examine the interaction between water, soil, and plant dynamics at two sites: the Ivey pecan farm in Tornillo, Texas and the Jornada Experimental Range in Las Cruces, New Mexico. I assess physical soil properties, including depth, texture, and ground cover types such as bare ground, creosote, mesquite, and grass. At the Ivey Pecan Orchard, fine and coarse sites were sampled to analyze variations in soil texture. Data from moisture sensors for the period of 2011-2021 were cross-verified with direct soil gravimetric measurements and SWRCs at corresponding depths. A corresponding adjustment in data allowed for accurate quantifications of soil moisture and subsequently conversions of these measurements into water potentials using the Fredlund-Xing (1994) model, thus providing a detailed view of moisture trends across different soil coverages and textures. At the Jornada Experimental Range, it was found that shallow soils at depths of 5 and 10 cm experienced significant increases in water loss (retained water less well), whereas deeper soils exhibited more water retention stability. Our refined data showed that the upper 30 cm of soils under creosote and mesquite shrubs typically maintained water availability above the wilting point of creosote (-6 MPa) only slightly more than 50% of the time. Thus, we conclude that shallow (0-30 cm) soils in the shrubland has insufficient water availability for sustained plant health year-round, which is consistent with seasonal grass dieback at the site. Shrub species, such as creosote and mesquite, likely compensate with access to deeper water sources via their rooting structures. Preliminary correlations of soil moisture data with carbon exchange measured via eddy flux tower were inconclusive, but further modeling could reveal important connections between water sufficiency and net carbon balance. The development of temporal soil water sufficiency curves and their ability to predict water availability for organisms contribute to a broader understanding of organism water availability in drylands. This tool provides a solid foundation for future studies in drylands and works to advance the understanding of soil-plant-atmosphere relations in dryland critical zones.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Comments
There are currently no comments
New Comment