In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Copy resource bag to your iRODS user zone
Are you sure you want to copy this resource bag to your iRODS user zone?
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Green roofs were designed by civil engineers to insulate buildings, protect buildings from ultraviolet light, and slow stormwater runoff. However, from a biologist’s perspective they are an untapped resource for growing crops and native plants that support pollinators. Two basic assumptions about green roofs are (1) that they provide more habitat for invertebrates than normal roofs, and (2) that approach the same level of biodiversity as ground level sites. The first assumption is so basic that it has rarely been tested. We compared biodiversity on a green roof composed of plants from a commonly used genus in the green roof industry, sedums, with biodiversity on an asphalt tile roof. To test the second assumption we compared biodiversity on a green roof of plants that contained a mix of native and nonnative plants to ground level sites in the immediate vicinity. Surprisingly, invertebrate biodiversity on a sedum roof was not different from that of an asphalt tile roof containing no vegetation. Biodiversity on the mixed native plant green roof did, however, approach similar levels of biodiversity to nearby ground level sites. We conclude that for green roofs to be functional from both engineering and biological perspectives, they must include a diverse array of plants. We are now testing a variety of native plants from Utah to determine their suitability for green roof installations. The data are limited to 2014 and include two separate sites: the greenroof-asphalt roof paired sites at Southern Utah University in Cedar City, Iron County, Utah, and the greenroof-ground level paired sites at the University of Utah, Salt Lake City, Salt Lake County, Utah.
Deleting all keywords will set the resource sharing status to private.
Resource Level Coverage
Spatial
Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
Utah
North Latitude
41.1456°
East Longitude
-111.1047°
South Latitude
37.2128°
West Longitude
-113.5437°
Temporal
Start Date:
End Date:
Open
Preview
Download
Download zipped
Get file URL
Open referenced URL
Refresh
Select all
Content
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
Consider downloading a copy of file(s) before deleting.
iUTAH-innovative Urban Transitions and Aridregion Hydro-sustainability
1208732
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
There are currently no comments
New Comment