In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
We provide a set of 26 soil moisture predictions across 15km grids at the global scale. We modeled and predicted the ESA-CCI soil moisture values across 26 years of available data (1991-2016) using a ML based kernel method and multiple terrain parameters (e.g., slope, wetness index) as prediction factors. We used ground information from the International Soil Moisture Network (ISMN, n=13376) for evaluating soil moisture predictions. Our downscaled soil moisture predictions across 15km grids showed a statistical accuracy varying 0.69-0.87% and 0.04 m3/m3 of cross-validated explained variance and root mean squared error (RMSE). We found a negative bias (-0.01 to -0.08 m3/m3 ) underestimating the values of ISMN when comparing with the ESA-CCI and our predictions across the analyzed years and a relatively better performance between 1998 and 2016. We found no significant differences between the ESA-CCI and our predictions, but we found discrepancy between multiple evaluation metrics (e.g., bias vs efficiency) comparing the ESA-CCI with the ISMN. However, the temporal analysis as revealed by a robust trend detection strategy (e.g., Theil-Sen estimator), suggests a decline of soil moisture at the global scale that is consistent in both gridded estimates and field measurements of soil moisture varying from -0.7[-0.77, -0.62]% in the ESA-CCI product, -0.9[-1.01, -0.8]% in the downscaled predictions and -1.6 [-1.7, -1.5]% in the ISMN. These results highlight the large potential of digital terrain parameters for improving the accuracy and spatial detail of satellite soil moisture grids at the global scale. The soil moisture predictions provided here (folder: predicted-2001-2016) could be useful for quantifying long term soil moisture emergent patterns (i.e., trends) across areas with low availability of soil moisture information in the ESA-CCI. To ensure reproducible results of this study, we also provide the R code and (also in R native format *.rds) the topographic prediction factors for soil moisture across 15 km grids (file: topographic_predictors_15km_grids.rds). This site also includes the harmonized ISMN data with the ESA-CCI and the downscaled predictions based on terrain analysis in an annual basis (files: harmonizedISMNvsESACCI.rds and harmonizedISMNvsPREDICTED.rds) that we used for validating our prediction framework. The soil moisture predictions provided here could be useful for quantifying soil moisture spatial and temporal dynamics across areas with low availability of soil moisture information in the original ESA-CCI database.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Comments
There are currently no comments
New Comment