GroMoPo Metadata for Rattlesnake Creek SWATMOD model
Authors: | |
---|---|
Owners: | gromopo_admin |
Type: | Resource |
Storage: | The size of this resource is 1.6 KB |
Created: | Feb 08, 2023 at 2:58 p.m. |
Last updated: | Feb 08, 2023 at 2:58 p.m. |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1139 |
Downloads: | 219 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
The objective of this article is to develop and implement a comprehensive computer model that is capable of simulating the surface-water, ground-water, and stream-aquifer interactions on a continuous basis for the Rattlesnake Creek basin in southcentral Kansas, The model is to be used as a tool for evaluating long-term water-management strategies. The agriculturally-based watershed model SWAT and the ground-water model MODFLOW with stream-aquifer interaction routines, suitably modified, were linked into a comprehensive basin model known as SWATMOD. The hydrologic response unit concept was implemented to overcome the quasi-lumped nature of SWAT and represent the heterogeneity within each subbasin of the basin model. A graphical user-interface and a decision support system were also developed to evaluate scenarios involving manipulation of water rights and agricultural land uses on stream-aquifer system response. An extensive sensitivity analysis on model parameters was conducted, and model limitations and parameter uncertainties were emphasized. A combination of trial-and-error and inverse modeling techniques were employed to calibrate the model against multiple calibration targets of measured ground-water levels, streamflows, and reported irrigation amounts, The split-sample technique was employed for corroborating the calibrated model. The model was run for a 40 y historical simulation period, and a 40 y prediction period. A number of hypothetical management scenarios involving reductions and variations in withdrawal rates and patterns were simulated. The SWATMOD model was developed as a hydrologically rational low-flow model for analyzing, in a user-friendly manner, the conditions in the basin when then is a shortage of water. (C) 1999 Elsevier Science B.V. All rights reserved.
Subject Keywords
Coverage
Spatial












Content
Additional Metadata
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment