In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
In dryland soils, spatiotemporal variation in surface soils (0-10 cm) plays an important role in the function of the “critical zone” that extends from canopy to groundwater. Understanding connections between soil microbes and biogeochemical cycling in surface soils requires repeated multivariate measurements of nutrients, microbial abundance, and microbial function. We examined these processes in resource islands and interspaces over a two-month period at a Chihuahuan Desert bajada shrubland site. We collected soil in Prosopis glandulosa (honey mesquite), Larrea tridentata (creosote bush), and unvegetated (interspace) areas to measure soil nutrient concentrations, microbial biomass, and potential exoenzyme activity. We monitored the dynamics of these belowground processes as soil conditions dried and then rewetted due to rainfall. Most measured variables, including inorganic nutrients, microbial biomass, and soil enzyme activities were greater under shrubs during both wet and dry periods, with the highest magnitudes under mesquite followed by creosote and then interspace. Two exceptions were soil organic carbon, which was slightly higher in interspace areas, and nitrate, which was highly variable and did not show resource island patterns. Temporally, rainfall pulses were associated with substantial changes in soil nutrient concentrations, though resource island patterns remained consistent during all phases of the soil moisture pulse. Microbial biomass was more consistent, decreasing only when soils were driest. Potential enzyme activities were even more consistent, and did not decline in dry periods, potentially helping to stimulate observed pulses in CO2 efflux following rain events observed at a co-located eddy flux tower. These results indicate a critical zone with organic matter cycling patterns consistently elevated in shrub resource islands, high decomposition potential that limits soil organic carbon accumulation across the landscape, and nitrate fluxes that are decoupled from the organic matter pathways.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Drs. Anthony Darrouzet-Nardi and Jennie McLaren Lab Groups
Start-Up Funds
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
There are currently no comments
New Comment