In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Stream drying and wildfire are projected to increase with climate change in the western United States, and both are likely to influence the patterns and processes explaining stream chemistry. To investigate drying and wildfire effects on stream chemistry (carbon, nutrients, anions, cations, and isotopes), we examined seasonal drying in two intermittent streams in southwestern Idaho, one stream that was unburned and one that burned six months prior. We hypothesized that spatiotemporal patterns of stream chemistry would change due to increased evaporation, groundwater dominance, and autochthonous carbon production as water and carbon sources shifted from snowmelt to low flow conditions. With increased nutrients and sunlight available, we expected greater shifts in the burned stream. To capture spatial stream chemistry patterns, we sampled surface water for a suite of analytes in each stream longitudinally with a high spatial scope (50-meter intervals along ~2500 meters). To capture temporal variation during drying, we sampled each stream in April, May, and June (2016). Patterns and processes influencing stream chemistry were generally similar in both streams, but some were amplified in the burned stream. Mean dissolved inorganic carbon (DIC) concentrations increased with drying by 22% in the unburned and by 3-fold in the burned stream. In contrast, mean total nitrogen (TN) concentrations decreased in both streams, with a 16% TN decrease (mostly DON) in the unburned stream and a 5-fold TN decrease (mostly nitrate) in the burned stream. Contrary to expectations, dissolved organic carbon (DOC) concentrations were longitudinally variable but relatively less temporally variant. In addition, we found weak evidence for evapoconcentration with drying. However, consistent with our expectations, both water isotopes and strontium-DIC ratios indicated stream water shifted towards groundwater-dominance, especially in the burned stream. Fluorescence and absorbance measurements showed considerable longitudinal variation in DOC sourcing with seasonal drying in both streams, and temporal shifts from autochthonous to allochthonous carbon sources in the burned stream. Our findings suggest that the effects of fire may magnify chemistry patterns but not the controls with stream drying. This empirical study contributes to advancing our conceptual stream models that incorporate stream drying, wildfire, and the interplay between them.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
You do not have permission to see these content files. Please contact an Owner if you wish to obtain access.
Additional Metadata
Name
Value
DOI
10.18122/td/1332/boisestate/reynoldscreek/16
Recommended Citation
MacNeille, Ruth B.; Lohse, Kathleen A.; Prediral, Julia N.; Godsey, Sarah E.; Baxter, Colden V.; and Seyfried, Mark S.. (2020). Stream Drying and Wildfire Recovery Surface Water Chemistry 2016 Dataset: Temporally Repeated High Spatial Scope Sampling for Intermittent Streams Johnston Draw Creek and Murphy Creek at Reynolds Creek Critical Zone Observatory (RC CZO) [Data set]. Retrieved from 10.18122/td/1332/boisestate/reynoldscreek/16
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
Idaho State University
Doctor of Arts in Biology Fellowship
National Science Foundation
Reynolds Creek Critical Zone Observatory
EAR-1331872
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Name
Organization
Address
Phone
Author Identifiers
USDA-ARS Northwest Watershed Research Center
Reynolds Creek Experimental Watershed
How to Cite
MacNeille, R. B., K. A. Lohse, J. Perdrial, S. E. Godsey, M. S. Seyfried, C. Reynolds (2020). RCCZO -- Nutrient Fluxes, Stream Water Chemistry -- Stream Drying, Wildfire, Surface Water Chemistry -- Reynolds Creek Experimental Watershed -- (2016-2016), HydroShare, http://www.hydroshare.org/resource/ca0f2f0f28ba40018ae64b973e2bb35a
This resource is shared under the Creative Commons Attribution CC BY.
Comments
There are currently no comments
New Comment