In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
This dataset consists of InSAR-measured line-of-sight surface deformation over the Ara watershed (located in northern Benin) for two dry seasons (November 2015-June 2016 and November 2016-June 2017). Thirty-six single look complex (SLC) images acquired by the Sentinel 1 mission were obtained from the Alaska Satellite Facility (ASF) Distributed Active Archive Centers (DAAC; http://www.asf.alaska.edu/) 12-, 24-, and 36-day interferograms were generated using the open source (GNU General Public License) Generic Mapping Tools 5 Synthetic Aperture Radar (GMT5SAR) processing system (Sandwell et al 2016, Massonnet and Feigl 1998). GMT5SAR geometrically aligns Sentinel TOPSAR images to a single master image with centimeter accuracy, maps topography into phase, and forms a stack of complex interferograms (Sandwell et al 2016). The Generic Mapping Tools- (GMT-) (Wessel et al 2013) based GMT5SAR postprocesser filters the interferogram and generates phase, coherence, and phase gradient products. GMT5SAR unwraps the interferograms using the well-known snaphu algorithm (Chen and Zebker 2000). Filter and decimation parameters for the inSAR processing were chosen to produce relatively high resolution interferograms, considering the computational cost of phase unwrapping. Lighter filtering and decimation improves interferogram resolution, but increases the computational time for phase unwrapping. Pixels were decimated by a factor of 8 in the range and 2 in the azimuth directions, generating interferograms with a pixel size of approximately 18.4 x 28.2 meters (range x azimuth). A 100 meter Gaussian filter was selected for the Ara study area. Enhances spectral diversity was used to reduce phase mismatch at the burst boundary (Sandwell et al 2016). The new small baseline subset(NSBAS) technique (Doin et al 2011) was used was used to generate a time series analysis of deformation across the study area. The NSBAS algorithm was applied using the Generic InSAR Analysis Toolbox (GIAnT; Agram et al 2012, 2013). The GIAnT tool box stacked the geometrically-aligned phase-unwrapped interferograms, estimated and applied corrections for residual long‐wavelength errors due to imprecise orbits, and estimated line-of-sight displacements using the NSBAS technique.
Agram P S, Jolivet R, Riel B, Lin Y N, Simons M, Hetland E, Doin M-P and Lasserre C 2013 New Radar Interferometric Time Series Analysis Toolbox Released Eos Trans. Am. Geophys. Union 94 69–70 Chen C W and Zebker H A 2000 Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms J Opt Soc Am A 17 401–414 Doin M-P, Guillaso S, Jolivet R, Lasserre C, Lodge F, Ducret G and Grandin R 2011 Presentation of the small baseline NSBAS processing chain on a case example: the Etna deformation monitoring from 2003 to 2010 using Envisat data Proceedings of the Fringe Symposium (ES) pp 3434–3437 Massonnet D and Feigl K L 1998 Radar interferometry and its application to changes in the Earth’s surface Rev. Geophys. 36 441–500 Sandwell D, Mellors R, Tong X, Wei M and Wessel P 2016 Gmtsar: An insar processing system based on generic mapping tools (second edition) Wessel P, Smith W H, Scharroo R, Luis J and Wobbe F 2013 Generic mapping tools: improved version released Eos Trans. Am. Geophys. Union 94 409–410
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
Slinski, K., T. Pellarin, B. Hector, J.M. Cohard, J.M. Vouillamoz, M. Descloitres, T. Hogue, and J. McCray. “InSAR-Measured Seasonal Surface Deformation Induced by the West African Monsoon in Sudanian West Africa.” Applied Sciences [Special Issue: Advances in Geohydrology: Methods and Applications] (in preparation).
The content of this resource is derived from
Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M, Traver I N, Deghaye P, Duesmann B, Rosich B, Miranda N, Bruno C, L’Abbate M, Croci R, Pietropaolo A, Huchler M and Rostan F 2012 GMES Sentinel-1 mission Remote Sens. Environ. 120 9–24
Credits
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
Funding Agencies
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
National Science Foundation
Graduate Research Fellowship
DGE-1057607
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
There are currently no comments
New Comment