Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Enabling Collaborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure: Landlab Notebooks
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 30.3 MB | |
Created: | May 20, 2019 at 10:25 p.m. | |
Last updated: | Jun 19, 2020 at 10:33 p.m. (Metadata update) | |
Published date: | May 30, 2019 at 1:27 a.m. | |
DOI: | 10.4211/hs.fdc3a06e6ad842abacfa5b896df73a76 | |
Citation: | See how to cite this resource |
Sharing Status: | Published |
---|---|
Views: | 3219 |
Downloads: | 1255 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
The ability to test hypotheses about hydrology, geomorphology, and atmospheric processes is invaluable to research in the Earth and planetary sciences. To swiftly develop experiments using community resources is an extraordinary emerging opportunity to accelerate the rate of scientific advancement. Knowledge infrastructure is an intellectual framework to understand how people are creating, sharing, and distributing knowledge -- which has dramatically changed and is continually transformed by Internet technologies. We are actively designing a knowledge infrastructure system for earth surface investigations. In this paper, we illustrate how this infrastructure can be utilized to lower common barriers to reproducing modeling experiments. These barriers include: developing education and training materials for classroom use, publishing research that can be replicated by reviewers and readers, and advancing collaborative research by re-using earth surface models in new locations or in new applications. We outline six critical elements to this infrastructure, 1) design of workflows for ease of use by new users; 2) a community-supported collaborative web platform that supports publishing and privacy; 3) data storage that may be distributed to different locations; 4) a software environment; 5) a personalized cloud-based high performance computing (HPC) platform; and 6) a standardized modeling framework that is growing with open source contributions. Our methodology uses the following tools to meet the above functional requirements. Landlab is an open-source modeling toolkit for building, coupling, and exploring two-dimensional numerical models. The Consortium of Universities Allied for Hydrologic Science (CUAHSI) supports the development and maintenance of a JupyterHub server that provides the software environment for the system. Data storage and web access are provided by HydroShare, an online collaborative environment for sharing data and models. The knowledge infrastructure system accelerates knowledge development by providing a suite of modular and interoperable process components that can be combined to create an integrated model. Online collaboration functions provide multiple levels of sharing and privacy settings, open source license options, and DOI publishing, and cloud access to high-speed processing. This allows students, domain experts, collaborators, researcher, and sponsors to interactively execute and explore shared data and modeling resources. Our system is designed to support the user experiences on the continuum from fully developed modeling applications to prototyping new science tools. We have provided three computational narratives for readers to interact with hands-on, problem-based research demonstrations - these are publicly available Jupyter Notebooks available on HydroShare.
To interactively compute with these Notebooks, please see the ReadMe below.
To develop these Notebooks, go to Github: https://github.com/ChristinaB/pub_bandaragoda_etal_ems or https://zenodo.org/badge/latestdoi/187289993
Subject Keywords
Coverage
Spatial
Content
Additional Metadata
Name | Value |
---|---|
appkey | MyBinder |
Related Resources
The content of this resource is derived from | https://zenodo.org/badge/latestdoi/187289993 |
The content of this resource is derived from | https://github.com/ChristinaB/pub_bandaragoda_etal_ems |
The content of this resource is derived from | https://www.hydroshare.org/resource/70b977e22af544f8a7e5a803935c329c/ |
This resource is referenced by | Bandaragoda, C. J., A. Castronova, E. Istanbulluoglu, R. Strauch, S. S. Nudurupati, J. Phuong, J. M. Adams, et al. “Enabling Collaborative Numerical Modeling in Earth Sciences Using Knowledge Infrastructure.” Environmental Modelling & Software, April 24, 2019. https://doi.org/10.1016/j.envsoft.2019.03.020. |
The content of this resource is derived from | https://www.hydroshare.org/resource/609b1201e4ac47d89eff56317af07d12/ |
The content of this resource is derived from | https://www.hydroshare.org/resource/bb9e1cc9e8b0487b99576938029fccb0/ |
This resource updates and replaces a previous version | Bandaragoda, C., A. M. Castronova, J. Phuong, E. Istanbulluoglu, S. S. Nudurupati, R. Strauch, N. Lyons (2022). Enabling Collaborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure: Landlab Notebooks, HydroShare, http://www.hydroshare.org/resource/70b977e22af544f8a7e5a803935c329c |
This resource has been replaced by a newer version | Bandaragoda, C., A. M. Castronova, J. Phuong, E. Istanbulluoglu, S. S. Nudurupati, R. Strauch, N. Lyons, K. Barnhart (2020). Enabling Collaborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure: Landlab Notebooks, HydroShare, http://www.hydroshare.org/resource/5b964154ebf945848087bdc772cc921e |
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
National Science Foundation | Collaborative Research: SI2-SSI: An Interactive Software Infrastructure for Sustaining Collaborative Community Innovation in the Hydrologic Sciences | 1148453 |
National Science Foundation | Predicting Climate Change impacts on Shallow Landslide Risk at regional scales | 1336725 |
National Science Foundation | Collaborative Research: SI2-SSI: Landlab: A Flexible, Open-Source Modeling Framework for Earth-Surface Dynamics | 1450412, 1450409, and 1450338 |
National Science Foundation | Community Facility Support: The Community Surface Dynamics Modeling System (CSDMS) | 1831623 |
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the creation of the resource's content but are not considered authors.
Name | Organization | Address | Phone | Author Identifiers |
---|---|---|---|---|
Madhavi Srinivasan | University of Washington | |||
David Tarboton | Utah State University | Utah, US | 4357973172 | ORCID |
Greg Tucker | University of Colorado at Boulder;Cooperative Institute for Research in Environmental Sciences;Community Surface Dynamics Modeling System (CSDMS) | |||
Jordan Adams | Tulane University | Louisiana, US | 6107397582 | |
Nicole Gasparini | Tulane University | |||
Eric Hutton | CSDMS;University of Colorado | |||
Daniel Edward James Hobley | Cardiff University | Wales, GB |
How to Cite
MIT License
Copyright (c) 2019 Christina Bandaragoda
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Comments
There are currently no comments
New Comment