Leland Dorchester

Colorado School of Mines

 Recent Activity

ABSTRACT:

Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore-scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive-tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore-scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic-length scale estimated from a best-fit dual domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass-transfer rate; and (3) a comparison of length scales associated with the mass-transfer rate (Lα) and those associated with calculation of the Peclet number (LPe) show LPe is commonly larger than Lα. These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore-water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single-porosity domains.

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore-scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive-tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore-scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic-length scale estimated from a best-fit dual domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass-transfer rate; and (3) a comparison of length scales associated with the mass-transfer rate (Lα) and those associated with calculation of the Peclet number (LPe) show LPe is commonly larger than Lα. These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore-water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single-porosity domains.

Show More