Yifan Cheng

 Recent Activity

ABSTRACT:

Data about water are found in many types of formats distributed by many different sources and depicting different spatial representations such as points, polygons and grids. How do we find and explore the data we need for our specific research or application? This seminar will present common challenges and strategies for finding and accessing relevant datasets, focusing on time series data from sites commonly represented as fixed geographical points. This type of data may come from automated monitoring stations such as river gauges and weather stations, from repeated in-person field observations and samples, or from model output and processed data products. We will present and explore useful data catalogs, including the CUAHSI HIS catalog accessible via HydroClient, CUAHSI HydroShare, the EarthCube Data Discovery Studio, Google Dataset search, and agency-specific catalogs. We will also discuss programmatic data access approaches and tools in Python, particularly the ulmo data access package, touching on the role of community standards for data formats and data access protocols. Once we have accessed datasets we are interested in, the next steps are typically exploratory, focusing on visualization and statistical summaries. This seminar will illustrate useful approaches and Python libraries used for processing and exploring time series data, with an emphasis on the distinctive needs posed by temporal data. Core Python packages used include Pandas, GeoPandas, Matplotlib and the geospatial visualization tools introduced at the last seminar. Approaches presented can be applied to other data types that can be summarized as single time series, such as averages over a watershed or data extracts from a single cell in a gridded dataset – the topic for the next seminar.

Show More

ABSTRACT:

This contains the dataset we will use for the water hack week project - extremeh2o.

Show More

ABSTRACT:

Data about water are found in many types of formats distributed by many different sources and depicting different spatial representations such as points, polygons and grids. How do we find and explore the data we need for our specific research or application? This seminar will present common challenges and strategies for finding and accessing relevant datasets, focusing on time series data from sites commonly represented as fixed geographical points. This type of data may come from automated monitoring stations such as river gauges and weather stations, from repeated in-person field observations and samples, or from model output and processed data products. We will present and explore useful data catalogs, including the CUAHSI HIS catalog accessible via HydroClient, CUAHSI HydroShare, the EarthCube Data Discovery Studio, Google Dataset search, and agency-specific catalogs. We will also discuss programmatic data access approaches and tools in Python, particularly the ulmo data access package, touching on the role of community standards for data formats and data access protocols. Once we have accessed datasets we are interested in, the next steps are typically exploratory, focusing on visualization and statistical summaries. This seminar will illustrate useful approaches and Python libraries used for processing and exploring time series data, with an emphasis on the distinctive needs posed by temporal data. Core Python packages used include Pandas, GeoPandas, Matplotlib and the geospatial visualization tools introduced at the last seminar. Approaches presented can be applied to other data types that can be summarized as single time series, such as averages over a watershed or data extracts from a single cell in a gridded dataset – the topic for the next seminar.

Cyberseminar recording is available on Youtube at https://youtu.be/uQXuS1AB2M0

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

Data about water are found in many types of formats distributed by many different sources and depicting different spatial representations such as points, polygons and grids. How do we find and explore the data we need for our specific research or application? This seminar will present common challenges and strategies for finding and accessing relevant datasets, focusing on time series data from sites commonly represented as fixed geographical points. This type of data may come from automated monitoring stations such as river gauges and weather stations, from repeated in-person field observations and samples, or from model output and processed data products. We will present and explore useful data catalogs, including the CUAHSI HIS catalog accessible via HydroClient, CUAHSI HydroShare, the EarthCube Data Discovery Studio, Google Dataset search, and agency-specific catalogs. We will also discuss programmatic data access approaches and tools in Python, particularly the ulmo data access package, touching on the role of community standards for data formats and data access protocols. Once we have accessed datasets we are interested in, the next steps are typically exploratory, focusing on visualization and statistical summaries. This seminar will illustrate useful approaches and Python libraries used for processing and exploring time series data, with an emphasis on the distinctive needs posed by temporal data. Core Python packages used include Pandas, GeoPandas, Matplotlib and the geospatial visualization tools introduced at the last seminar. Approaches presented can be applied to other data types that can be summarized as single time series, such as averages over a watershed or data extracts from a single cell in a gridded dataset – the topic for the next seminar.

Cyberseminar recording is available on Youtube at https://youtu.be/uQXuS1AB2M0

Show More
Resource Resource

ABSTRACT:

This contains the dataset we will use for the water hack week project - extremeh2o.

Show More
Resource Resource

ABSTRACT:

Data about water are found in many types of formats distributed by many different sources and depicting different spatial representations such as points, polygons and grids. How do we find and explore the data we need for our specific research or application? This seminar will present common challenges and strategies for finding and accessing relevant datasets, focusing on time series data from sites commonly represented as fixed geographical points. This type of data may come from automated monitoring stations such as river gauges and weather stations, from repeated in-person field observations and samples, or from model output and processed data products. We will present and explore useful data catalogs, including the CUAHSI HIS catalog accessible via HydroClient, CUAHSI HydroShare, the EarthCube Data Discovery Studio, Google Dataset search, and agency-specific catalogs. We will also discuss programmatic data access approaches and tools in Python, particularly the ulmo data access package, touching on the role of community standards for data formats and data access protocols. Once we have accessed datasets we are interested in, the next steps are typically exploratory, focusing on visualization and statistical summaries. This seminar will illustrate useful approaches and Python libraries used for processing and exploring time series data, with an emphasis on the distinctive needs posed by temporal data. Core Python packages used include Pandas, GeoPandas, Matplotlib and the geospatial visualization tools introduced at the last seminar. Approaches presented can be applied to other data types that can be summarized as single time series, such as averages over a watershed or data extracts from a single cell in a gridded dataset – the topic for the next seminar.

Show More