Thomas S. Varner
University of Texas at San Antonio
Subject Areas: | Aqueous geochemistry, Biogeochemistry, Contaminant transport |
Recent Activity
ABSTRACT:
Study Abstract
In alluvial aquifers with near-neutral pH and high dissolved arsenic (As) concentrations, the presence and character of sedimentary organic matter (SOM) regulates As mobility by serving as an energetically variable source of electrons for redox reactions or forming As–Fe-OM complexes. Near tidally and seasonally fluctuating rivers, the hyporheic zone (HZ), which embodies the mixing zone between oxic river water and anoxic shallow groundwater, may precipitate (or dissolve) iron (Fe)-oxides which sequester (or mobilize) As. To understand what is driving the mobilization of As within a shallow aquifer and riverbank sands adjacent to the tidally fluctuating Meghna River, we characterized the chemical reactivity of SOM from the sands, and a silt and clay layer, underlying the HZ and aquifer, respectively. Dissolved As (50–500 μg/L) and Fe (1–40 mg/L) concentrations increase with depth within the shallow aquifer. Similar vertical As and Fe concentration gradients were observed within the riverbank sands where concentrations of the products of reductive dissolution of Fe-oxides increase with proximity to the silt layer. Compared to all other sediments, the SOM in the clay aquitard contains older, more recalcitrant, terrestrially-derived material with high proportions of aromatic carboxylate functional groups. The shallow silt layer contains fresher SOM with higher proportions of amides and more labile polysaccharide moieties. The SOM in both the riverbank and aquifer is terrestrially-derived and humic-like. The labile SOM from the silt layer drives the microbially mediated reductive dissolution of As-bearing Fe-oxides in the HZ. In contrast, the carboxylate-rich SOM from the clay aquitard maintains dissolved As concentrations at the base of the aquifer by complexing with soluble As and Fe. This highlights that SOM-rich fine (silt or clay) layers in the Bengal basin drive As and Fe mobility, however, the specific processes mobilizing As and Fe depend on the lability of the SOM.
ABSTRACT:
This repository contains all the sediment and experimental data used in this study.
Study Abstract
Sedimentary arsenic (As) in the shallow aquifers of Bangladesh is enriched in finer-grained deposits that are rich in organic matter (OM), clays, and iron (Fe)-oxides. In Bangladesh, sediment color is a useful indicator of pore water As concentrations. The pore waters of orange sediments are usually associated with lower As concentrations (<50 µg/L) owing to abundant Fe-oxides which sorb As. Using this color signal as a guide, spectroscopic measurements alongside thermal treatment were extensively utilized for analyzing the properties of both Fe-oxides and clay minerals. This study uses Fourier transform infrared (FTIR) and diffuse reflectance (DR) measurements along with thermal treatment to evaluate the solid-phase associations of As from sediment collected along the Meghna River in Bangladesh. The samples analyzed in this study were chosen to represent the various lithologies present at the study site and included riverbank sands (1 m depth), silt (6 m depth), aquifer sand (23 m depth), and a clay aquitard (37 m depth). The concentrations of sedimentary As and Fe were measured by X-ray fluorescence, and the spectroscopic measurements were taken on the samples prior to the thermal treatment. For the thermal treatment, sediment samples were placed in a preheated furnace at 600 °C for 3 h. The thermal treatment caused a deepening of reddish-brown hues in all samples, and the greatest change in color was observed in the finer-grained samples. The FTIR spectral analysis revealed that the clay minerals were composed primarily of illite, smectite, and kaolinite. The DR results indicate that the majority of Fe in sands was present as goethite; however, in the clay and silt samples, Fe was incorporated into the structure of clay minerals as Fe(II). The amount of structural Fe(II) was strongly positively correlated with the sedimentary As concentrations, which were highest in the finer-grained samples. After thermal treatment, the concentrations of As in the finer-grained samples decreased by an average of 40%, whereas the change in the As concentrations of the sand samples was negligible. These findings indicate that significant proportions of solid-phase As may be retained by OM and Fe(II)-bearing clay minerals.
ABSTRACT:
This repository contains all the measured inorganic and organic data obtained from the sediment samples used in this study, including the experimental data from a water-sediment extraction.
Study Abstract
Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.
Contact
(Log in to send email) |
All | 3 |
Collection | 0 |
Resource | 3 |
App Connector | 0 |

Created: May 2, 2024, 7:16 p.m.
Authors: Thomas S. Varner · Harshad V. Kulkarni · William Nguyen · Kyungwon Kwak · Cardenas, M. Bayani · Knappett, Peter · Ann S. Ojeda · Natalia Malina · Mesbah Uddin Bhuiyan · Kazi M. Ahmed · Saugata Datta
ABSTRACT:
This repository contains all the measured inorganic and organic data obtained from the sediment samples used in this study, including the experimental data from a water-sediment extraction.
Study Abstract
Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.

Created: May 2, 2024, 7:38 p.m.
Authors: Thomas S. Varner · Harshad V. Kulkarni · Mesbah Uddin Bhuiyan · Cardenas, M. Bayani · Knappett, Peter · Saugata Datta
ABSTRACT:
This repository contains all the sediment and experimental data used in this study.
Study Abstract
Sedimentary arsenic (As) in the shallow aquifers of Bangladesh is enriched in finer-grained deposits that are rich in organic matter (OM), clays, and iron (Fe)-oxides. In Bangladesh, sediment color is a useful indicator of pore water As concentrations. The pore waters of orange sediments are usually associated with lower As concentrations (<50 µg/L) owing to abundant Fe-oxides which sorb As. Using this color signal as a guide, spectroscopic measurements alongside thermal treatment were extensively utilized for analyzing the properties of both Fe-oxides and clay minerals. This study uses Fourier transform infrared (FTIR) and diffuse reflectance (DR) measurements along with thermal treatment to evaluate the solid-phase associations of As from sediment collected along the Meghna River in Bangladesh. The samples analyzed in this study were chosen to represent the various lithologies present at the study site and included riverbank sands (1 m depth), silt (6 m depth), aquifer sand (23 m depth), and a clay aquitard (37 m depth). The concentrations of sedimentary As and Fe were measured by X-ray fluorescence, and the spectroscopic measurements were taken on the samples prior to the thermal treatment. For the thermal treatment, sediment samples were placed in a preheated furnace at 600 °C for 3 h. The thermal treatment caused a deepening of reddish-brown hues in all samples, and the greatest change in color was observed in the finer-grained samples. The FTIR spectral analysis revealed that the clay minerals were composed primarily of illite, smectite, and kaolinite. The DR results indicate that the majority of Fe in sands was present as goethite; however, in the clay and silt samples, Fe was incorporated into the structure of clay minerals as Fe(II). The amount of structural Fe(II) was strongly positively correlated with the sedimentary As concentrations, which were highest in the finer-grained samples. After thermal treatment, the concentrations of As in the finer-grained samples decreased by an average of 40%, whereas the change in the As concentrations of the sand samples was negligible. These findings indicate that significant proportions of solid-phase As may be retained by OM and Fe(II)-bearing clay minerals.

Created: May 2, 2024, 7:53 p.m.
Authors: Thomas S. Varner · Harshad V. Kulkarni · Kyungwon Kwak · Cardenas, M. Bayani · Knappett, Peter · Saugata Datta
ABSTRACT:
Study Abstract
In alluvial aquifers with near-neutral pH and high dissolved arsenic (As) concentrations, the presence and character of sedimentary organic matter (SOM) regulates As mobility by serving as an energetically variable source of electrons for redox reactions or forming As–Fe-OM complexes. Near tidally and seasonally fluctuating rivers, the hyporheic zone (HZ), which embodies the mixing zone between oxic river water and anoxic shallow groundwater, may precipitate (or dissolve) iron (Fe)-oxides which sequester (or mobilize) As. To understand what is driving the mobilization of As within a shallow aquifer and riverbank sands adjacent to the tidally fluctuating Meghna River, we characterized the chemical reactivity of SOM from the sands, and a silt and clay layer, underlying the HZ and aquifer, respectively. Dissolved As (50–500 μg/L) and Fe (1–40 mg/L) concentrations increase with depth within the shallow aquifer. Similar vertical As and Fe concentration gradients were observed within the riverbank sands where concentrations of the products of reductive dissolution of Fe-oxides increase with proximity to the silt layer. Compared to all other sediments, the SOM in the clay aquitard contains older, more recalcitrant, terrestrially-derived material with high proportions of aromatic carboxylate functional groups. The shallow silt layer contains fresher SOM with higher proportions of amides and more labile polysaccharide moieties. The SOM in both the riverbank and aquifer is terrestrially-derived and humic-like. The labile SOM from the silt layer drives the microbially mediated reductive dissolution of As-bearing Fe-oxides in the HZ. In contrast, the carboxylate-rich SOM from the clay aquitard maintains dissolved As concentrations at the base of the aquifer by complexing with soluble As and Fe. This highlights that SOM-rich fine (silt or clay) layers in the Bengal basin drive As and Fe mobility, however, the specific processes mobilizing As and Fe depend on the lability of the SOM.