Ryan Ellis Harmon

Colorado School of Mines;University of California Santa Cruz

 Recent Activity

ABSTRACT:

These data are published in Harmon, R., Barnard, H., Day-Lewis, F.D., Mao, D., and Singha, K. (2021). Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis. Frontiers in Water, doi: 10.3389/frwa.2021.682285.

Internal water storage within trees can be a critical reservoir that helps trees overcome both short- and long-duration environmental stresses. We monitored changes in internal tree water storage in a ponderosa pine using moisture probes, a dendrometer, and time-lapse electrical resistivity imaging (ERI) to investigate how patterns of in-tree water storage are affected by changes in sapflow rates, soil moisture, and meteorologic factors such as vapor pressure deficit. ERI measurements are influenced by changes in moisture, temperature, solute concentration, and material properties; thus, to evaluate changes in moisture based on ERI, the first three factors must be considered. Measurements of xylem fluid electrical conductivity were constant in the early growing season, while inverted sapwood electrical conductivity steadily increased, suggesting that increases in electrical conductivity of the sapwood did not result from an increase xylem fluid electrical conductivity. Seasonal increases in stem electrical conductivity corresponded with seasonal increases in trunk diameter, suggesting that increased electrical conductivity may result from new growth. Changes in diel amplitudes of inverted sapwood electrical conductivity, which correspond to diel changes in sapwood moisture, indicated that tree water storage use was greatest ~4-5 days after storm events, when sapwood inverted electrical conductivity measurements suggest internal stores were high. A decrease in diel amplitudes of inverted sapwood electrical conductivity during dry periods, suggest that the ponderosa pine relied on internal water storage to supplement transpiration demands, but as drought conditions progressed, tree water storage contributions to transpiration decreased. Wavelet analyses indicated that lag times between inverted sapwood electrical conductivity and sapflow increased after storm events, suggesting that as soils dried reliance on internal water storage increased and the time required to refill daily deficits in internal water storage increased. Lag times peaked when soil moisture returned to pre-storm event levels and then decreased as drought progressed. Short time lags between sapflow and inverted sapwood electrical conductivity corresponded with dry conditions, when ponderosa pine are known to reduce stomatal conductance to avoid xylem cavitation. Time-lapse ERI- and wavelet-analysis results highlighted the important role internal tree water storage plays in supporting transpiration throughout the course of a day, and during periods of declining subsurface moisture.

Show More

ABSTRACT:

Data from Harmon, R., Barnard, H., and Singha, K. (2020). Water-table depth and bedrock permeability control magnitude and timing of transpiration-induced diel fluctuations in groundwater. Water Resources Research, 56, e2019WR025967. https://doi.org/10.1029/2019WR025967.

The subsurface processes that mediate the connection between evapotranspiration and groundwater within forested hillslopes are poorly defined. Here, we investigate the origin of diel signals in unsaturated soil water, groundwater, and stream stage on three forested hillslopes in the H.J. Andrews Experimental Forest in western Oregon, USA, during the summer of 2017, and assess how the diurnal signal in evapotranspiration (ET) is transferred through the hillslope and into these stores. There was no evidence of diel fluctuations in upslope groundwater wells, suggesting that tree water uptake in upslope areas does not directly contribute to the diel signal observed in near-stream groundwater and streamflow. The water table in upslope areas resided within largely consolidated bedrock, which was overlain by highly fractured unsaturated bedrock. These subsurface characteristics inhibit formation of diel signals in groundwater and impeded the transfer of diel signals in soil moisture to groundwater because (1) the bedrock where the water table resides limited root penetration and (2) the low unsaturated hydraulic conductivity of the highly fractured rock weakened the hydraulic connection between groundwater and soil/rock moisture. Transpiration-driven diel fluctuations in groundwater were limited to near-stream areas but were not ubiquitous in space and time. The depth to the groundwater table and the geologic structure at that depth likely dictated rooting depth and thus controlled where and when the transpiration-driven diel fluctuations were apparent in riparian groundwater. This study outlines the role of hillslope hydrogeology and its influence on the translation of evapotranspiration and soil moisture fluctuations to groundwater and stream fluctuations.

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

Data from Harmon, R., Barnard, H., and Singha, K. (2020). Water-table depth and bedrock permeability control magnitude and timing of transpiration-induced diel fluctuations in groundwater. Water Resources Research, 56, e2019WR025967. https://doi.org/10.1029/2019WR025967.

The subsurface processes that mediate the connection between evapotranspiration and groundwater within forested hillslopes are poorly defined. Here, we investigate the origin of diel signals in unsaturated soil water, groundwater, and stream stage on three forested hillslopes in the H.J. Andrews Experimental Forest in western Oregon, USA, during the summer of 2017, and assess how the diurnal signal in evapotranspiration (ET) is transferred through the hillslope and into these stores. There was no evidence of diel fluctuations in upslope groundwater wells, suggesting that tree water uptake in upslope areas does not directly contribute to the diel signal observed in near-stream groundwater and streamflow. The water table in upslope areas resided within largely consolidated bedrock, which was overlain by highly fractured unsaturated bedrock. These subsurface characteristics inhibit formation of diel signals in groundwater and impeded the transfer of diel signals in soil moisture to groundwater because (1) the bedrock where the water table resides limited root penetration and (2) the low unsaturated hydraulic conductivity of the highly fractured rock weakened the hydraulic connection between groundwater and soil/rock moisture. Transpiration-driven diel fluctuations in groundwater were limited to near-stream areas but were not ubiquitous in space and time. The depth to the groundwater table and the geologic structure at that depth likely dictated rooting depth and thus controlled where and when the transpiration-driven diel fluctuations were apparent in riparian groundwater. This study outlines the role of hillslope hydrogeology and its influence on the translation of evapotranspiration and soil moisture fluctuations to groundwater and stream fluctuations.

Show More
Resource Resource

ABSTRACT:

These data are published in Harmon, R., Barnard, H., Day-Lewis, F.D., Mao, D., and Singha, K. (2021). Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis. Frontiers in Water, doi: 10.3389/frwa.2021.682285.

Internal water storage within trees can be a critical reservoir that helps trees overcome both short- and long-duration environmental stresses. We monitored changes in internal tree water storage in a ponderosa pine using moisture probes, a dendrometer, and time-lapse electrical resistivity imaging (ERI) to investigate how patterns of in-tree water storage are affected by changes in sapflow rates, soil moisture, and meteorologic factors such as vapor pressure deficit. ERI measurements are influenced by changes in moisture, temperature, solute concentration, and material properties; thus, to evaluate changes in moisture based on ERI, the first three factors must be considered. Measurements of xylem fluid electrical conductivity were constant in the early growing season, while inverted sapwood electrical conductivity steadily increased, suggesting that increases in electrical conductivity of the sapwood did not result from an increase xylem fluid electrical conductivity. Seasonal increases in stem electrical conductivity corresponded with seasonal increases in trunk diameter, suggesting that increased electrical conductivity may result from new growth. Changes in diel amplitudes of inverted sapwood electrical conductivity, which correspond to diel changes in sapwood moisture, indicated that tree water storage use was greatest ~4-5 days after storm events, when sapwood inverted electrical conductivity measurements suggest internal stores were high. A decrease in diel amplitudes of inverted sapwood electrical conductivity during dry periods, suggest that the ponderosa pine relied on internal water storage to supplement transpiration demands, but as drought conditions progressed, tree water storage contributions to transpiration decreased. Wavelet analyses indicated that lag times between inverted sapwood electrical conductivity and sapflow increased after storm events, suggesting that as soils dried reliance on internal water storage increased and the time required to refill daily deficits in internal water storage increased. Lag times peaked when soil moisture returned to pre-storm event levels and then decreased as drought progressed. Short time lags between sapflow and inverted sapwood electrical conductivity corresponded with dry conditions, when ponderosa pine are known to reduce stomatal conductance to avoid xylem cavitation. Time-lapse ERI- and wavelet-analysis results highlighted the important role internal tree water storage plays in supporting transpiration throughout the course of a day, and during periods of declining subsurface moisture.

Show More