Walter McDonald

Marquette University

 Recent Activity

ABSTRACT:

This data contains GIS shapefiles that were used to develop an integrated tire wear and rainfall runoff model.

Show More

ABSTRACT:

The following resource contains the data and code that were used for the study described in the abstract below.
Hurricane Harvey produced unprecedented flooding that altered flood frequency statistics near Houston. While Harvey could have made landfall elsewhere along the Gulf coast, traditional flood frequency methodologies only consider the risk of Harvey in the region that it hit. This may be a significant shortcoming of flood frequency methodologies as the intensity of Harvey was greater due to climate change; therefore, Harvey may be more indicative of future hurricanes than other historical observations. This study addresses this shortcoming by investigating what effect Harvey would have had on flood frequency statistics if it had made landfall elsewhere. This was done by shifting spatial rainfall data to probable alternative landfall locations in two separate geomorphologic regions adjacent to the Texas coast and using synthetic unit hydrographs to create a simulated set of peakflows. These simulated peakflows were then used to evaluate the impact of Harvey in these new locations using Log Pearson III and Regional Flood Frequency Analyses. Log Pearson III analyses with simulated Harvey streamflows produced 100-year peakflows that were, on average, 21.4% – 63.9% higher than analyses that only used historical records. A similar Regional Flood Frequency analysis in the central coastal geomorphologic region of Texas showed that predictive equations, based upon basin area and shape factor, had an average increase of 17.7% in the 100-year peak discharge. This study demonstrates that contemporary storms, whose intensities are increased by climate change, may have similar impacts on flood frequency statistics and regional regression equations in other regions within their probabilistic landfall path.

Show More

 Contact

Resources
All 2
Collection 0
Resource 2
App Connector 0
Resource Resource

ABSTRACT:

The following resource contains the data and code that were used for the study described in the abstract below.
Hurricane Harvey produced unprecedented flooding that altered flood frequency statistics near Houston. While Harvey could have made landfall elsewhere along the Gulf coast, traditional flood frequency methodologies only consider the risk of Harvey in the region that it hit. This may be a significant shortcoming of flood frequency methodologies as the intensity of Harvey was greater due to climate change; therefore, Harvey may be more indicative of future hurricanes than other historical observations. This study addresses this shortcoming by investigating what effect Harvey would have had on flood frequency statistics if it had made landfall elsewhere. This was done by shifting spatial rainfall data to probable alternative landfall locations in two separate geomorphologic regions adjacent to the Texas coast and using synthetic unit hydrographs to create a simulated set of peakflows. These simulated peakflows were then used to evaluate the impact of Harvey in these new locations using Log Pearson III and Regional Flood Frequency Analyses. Log Pearson III analyses with simulated Harvey streamflows produced 100-year peakflows that were, on average, 21.4% – 63.9% higher than analyses that only used historical records. A similar Regional Flood Frequency analysis in the central coastal geomorphologic region of Texas showed that predictive equations, based upon basin area and shape factor, had an average increase of 17.7% in the 100-year peak discharge. This study demonstrates that contemporary storms, whose intensities are increased by climate change, may have similar impacts on flood frequency statistics and regional regression equations in other regions within their probabilistic landfall path.

Show More
Resource Resource
Integrated tire wear and rainfall runoff model
Created: Sept. 5, 2023, 8:31 p.m.
Authors: McDonald, Walter

ABSTRACT:

This data contains GIS shapefiles that were used to develop an integrated tire wear and rainfall runoff model.

Show More