Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 8.3 MB | |
Created: | Dec 06, 2018 at 6:29 p.m. | |
Last updated: | Dec 06, 2018 at 6:30 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 2124 |
Downloads: | 41 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
TUCKER, Gregory E., CIRES & Department of Geological Sciences, University of Colorado, 2200 Colorado Ave, Boulder, CO 80309-0399; Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Campus Box 399, Boulder, CO 80309, HUTTON, Eric, Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Cam, Boulder, CO 80309 and PIPER, Mark, Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Campus Box 399, Boulder, CO 80309; Instaar, University of Colorado, campus Box 450, 1560 30th St, Boulder, CO 80303
Our planet’s surface is a restless place. Understanding the processes of weathering, erosion, and deposition that shape it is critical for applications ranging from short-term hazard analysis to long-term sedimentary stratigraphy and landscape/seascape evolution. Improved understanding requires computational models, which link process mechanics and chemistry to the observable geologic and geomorphic record. Historically, earth-surface process models have often been complex and difficult to work with. To help improve this situation and make the discovery process more efficient, the CSDMS Python Modeling Tool (PyMT) provides an environment in which community-built numerical models and tools can be initialized and run directly from a Python command line or Jupyter notebook. By equipping each model with a standardized set of command functions, known collectively as the Basic Model Interface (BMI), the task of learning and applying models becomes much easier. Using BMI functions, models can also be coupled together to explore dynamic feedbacks among different earth systems. To illustrate how PyMT works and the advantages it provides, we present an example that couples a terrestrial landscape evolution model (CHILD) with a marine sediment transport and stratigraphy model (SedFlux3D). Experiments with the resulting coupled model provide insights into how terrestrial “signals,” such as variations in mean precipitation, are recorded in deltaic stratigraphy. The example also illustrates the utility of PyMT’s tools, such as the ability to map variables between a regular rectilinear grid and an irregular triangulated grid. By simplifying the process of learning, operating, and coupling models, PyMT frees researchers to focus on exploring ideas, testing hypotheses, and comparing models with data.
Subject Keywords
Content
Related Resources
Title | Owners | Sharing Status | My Permission |
---|---|---|---|
GSA 2018 Pardee: Earth as a Big Data Puzzle: Advancing Information Frontiers in Geoscience | Leslie Hsu | Public & Shareable | Open Access |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment